

Jurnal Sains Informatika Terapan (JSIT)
E-ISSN: 2828-1659, Volume: 4, Issue: 3, Year: 2025

 Page: 706-709, Available online at: https://rcf-indonesia.org/home/

 706 | rcf-Indonesia.org

PENERAPAN KONSEP ARRAY PADA STRUKTUR DATA UNTUK

PENINGKATAN EFISIENSI PENCARIAN DAN PENYIMPANAN DATA

Aulia Rizky1), Diva Alif Prasetyo2) Dwi Ramadhani Kumala Sari3) Galang Eka Octananda Zeflin4)

UNIVERSITAS IBNU SINA
1 231055201096@uis.ac.id ,

 2
231055201092@uis.ac.id ,

 3
231055201051@uis.ac.id ,

4
231055201060@uis.ac.id .

Article Info ABSTRAK

Article history:

Received: Juny 26, 2025

Revised: July, 20, 2025

Accepted: sept, 24, 2025

Published: Okt, 30,2025

 Di era digital, manajemen data yang efisien menjadi krusial. Struktur data

menawarkan berbagai cara untuk mengorganisasi data, dan salah satu yang paling

fundamental adalah array (Mathematics, 2016) Artikel ini membahas penerapan

konsep array dalam struktur data untuk meningkatkan efisiensi proses penyimpanan
dan pencarian data. Melalui analisis kompleksitas waktu, artikel ini menunjukkan

bagaimana array, dengan karakteristik akses berbasis indeksnya, mampu

menyediakan performa superior untuk operasi tertentu dibandingkan struktur data

lainnya. Keunggulan utama array terletak pada kecepatan akses elemen secara acak
(O(1)) (Siahaan & Tantular, 2021)dan efisiensi pencarian data pada array yang terurut

menggunakan algoritma binary search (O(logn)) (Mulyana et al., 2021)Meskipun

memiliki keterbatasan dalam hal ukuran yang statis dan operasi

penyisipan/penghapusan yang lambat, pemilihan array yang tepat pada skenario yang
sesuai terbukti dapat mengoptimalkan kinerja sistem secara signifikan (Rizki et al.,

2025)

Kata Kunci:

Array

Struktur Data

Pencarian Biner

Efisiensi Data

Penyimpanan Data

This is an open-access article distributed under the terms of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY SA 4.0)

1. PENDAHULUAN

Dalam era revolusi industri 4.0 dan

perkembangan teknologi informasi yang pesat, data

telah menjadi aset yang sangat berharga bagi

organisasi, perusahaan, maupun individu(Shahzad et

al., 2024). Setiap hari, jumlah data yang dihasilkan

terus meningkat secara eksponensial, baik dalam

bentuk teks, angka, gambar, video, maupun sinyal

sensor. Akibatnya, kebutuhan akan pengelolaan data

yang cepat, akurat, dan efisien menjadi sangat penting

untuk menunjang pengambilan keputusan,

pengembangan sistem informasi, serta optimalisasi

kinerja berbagai aplikasi. Dalam konteks ini, struktur

data memegang peranan yang sangat vital sebagai

fondasi utama dalam menyimpan, mengatur, dan

mengakses data dengan cara yang terorganisir dan

efisien (Mulyana et al., 2021)

Salah satu struktur data dasar yang paling sering

digunakan dan memiliki peran strategis dalam

pengolahan data adalah array. Array merupakan

kumpulan elemen data yang tersimpan secara

berurutan di lokasi memori dan dapat diakses secara

langsung menggunakan indeks (Siahaan & Tantular,

2021) utama dari array terletak pada kemampuannya

untuk menyediakan akses data yang sangat cepat

(konstanta waktu O(1)) karena tidak memerlukan

proses penelusuran pointer atau node seperti pada

linked list (Mulyana et al., 2021). Oleh karena itu,

array sering digunakan dalam aplikasi-aplikasi yang

memerlukan pengolahan data dalam jumlah besar dan

pengambilan data secara cepat, seperti dalam

pengolahan citra digital, sistem basis data, pengolahan

sinyal, pengembangan sistem real-time, serta

pengembangan perangkat lunak pada umumnya.

Konsep array bahkan diterapkan dalam bidang-bidang

komputasi canggih seperti pada tweezer array untuk

qubit atomik (Manetsch et al., 2024) Rydberg array

(Anand et al., 2024) dan sistem layanan darurat yang

menggunakan antrian prioritas (Valent et al., 2025)

Namun demikian, di balik keunggulannya, array

juga memiliki sejumlah keterbatasan yang perlu

dipertimbangkan dalam perancangan sistem. Salah

satu keterbatasan utama array adalah sifatnya yang

statis, di mana ukuran array umumnya harus

ditentukan di awal saat deklarasi dan tidak dapat

diubah selama program berjalan (kecuali dengan

penggunaan array dinamis pada bahasa pemrograman

tertentu) (Siahaan & Tantular, 2021) Selain itu, proses

penyisipan maupun penghapusan data pada array

cenderung kurang efisien karena dapat memerlukan

https://rcf-indonesia.org/home/
mailto:231055201096@uis.ac.id
mailto:231055201092@uis.ac.id
mailto:231055201051@uis.ac.idm
mailto:231055201060@uis.ac.id

 707 | rcf-Indonesia.org

pergeseran elemen-elemen lain di dalam array

(Mathematics, 2016). Oleh karena itu, pemilihan array

sebagai struktur data harus disesuaikan dengan

kebutuhan dan karakteristik data yang akan dikelola.

Meskipun memiliki keterbatasan, efisiensi array

dalam penyimpanan dan pencarian data tetap dapat

ditingkatkan dengan mengombinasikannya bersama

algoritma pencarian yang sesuai, seperti sequential

search untuk data yang tidak terurut, dan binary search

untuk data yang terurut (Siahaan & Tantular, 2021).

Selain itu, pengembangan konsep array juga

memungkinkan array diterapkan dalam bentuk yang

lebih kompleks, seperti array multidimensi untuk

penyimpanan data tabel atau matriks, hash table yang

memanfaatkan array untuk pencarian cepat, serta array

dinamis yang memungkinkan penyesuaian ukuran

array secara otomatis saat program berjalan. Dengan

penguasaan konsep array serta pemanfaatan algoritma

yang tepat, efisiensi dalam penyimpanan dan

pencarian data dapat dioptimalkan, sehingga

menghasilkan sistem pengolahan data yang lebih

efektif dan handal (Trio et al., 2025)

2. METODE

2.1. Jenis Penelitian

 Penelitian ini merupakan penelitian kuantitatif

eksperimental yang bertujuan untuk menguji efisiensi

penggunaan struktur data array dalam proses

pencarian dan penyimpanan data dibandingkan

dengan struktur data lainnya (misalnya linked list atau

struktur dinamis lainnya).

2.2. Pendekatan Penelitian

 Pendekatan yang digunakan adalah eksperimen

komputasional, di mana berbagai skenario pencarian

dan penyimpanan data akan diuji menggunakan

implementasi array dan dibandingkan hasilnya dengan

pendekatan lainnya dalam hal waktu eksekusi dan

penggunaan memori.

2.3. Objek Penelitian

 Objek dalam penelitian ini adalah struktur data

array yang diimplementasikan dalam bahasa

pemrograman (misalnya Python, Java, atau C++) dan

digunakan untuk menyimpan dan mencari data dalam

jumlah besar. Perbandingan dilakukan terhadap

struktur data lain seperti linked list atau hash table

(Rizki et al., 2025)

2.4. Tabel Alat, Bahasa dan Dataset

 Array dipilih sebagai objek utama karena

memiliki kompleksitas akses data O(1) dan sangat

efisien untuk data statis (Siahaan & Tantular, 2021)

Dibandingkan dengan linked list yang memiliki

kompleksitas akses O(n), array lebih unggul dalam

pencarian cepat dan implementasi algoritma sorting

atau searching (Siahaan & Tantular, 2021)

2.4.1. Studi Literatur

Melakukan studi pustaka mengenai:

• Konsep dan implementasi array

(Mathematics, 2016)

• Efisiensi pencarian dan penyimpanan data

(Siahaan & Tantular, 2021)

• Perbandingan dengan struktur data lain

(Rizki et al., 2025).

2.4.2. Perancangan Program

 Membuat beberapa modul program dengan:

• Implementasi struktur data array

• Implementasi struktur data pembanding

(linked list atau lainnya)

• Fungsi pencarian (sequential search, binary

search)

• Fungsi penyimpanan (insert, update, delete)

2.4.3. Eksperimen

Melakukan pengujian dengan:

• Dataset yang berbeda ukuran (kecil, sedang,

besar)

• Teknik pencarian yang berbeda (linear,

binary)

• Pengukuran waktu eksekusi (execution time)

• Pengukuran penggunaan memori (memory

usage)

2.4.4. Analisis Data

Data hasil eksperimen akan dianalisis

menggunakan statistik deskriptif, seperti:

• Rata-rata waktu eksekusi

• Grafik perbandingan performa

• Analisis efisiensi berdasarkan ukuran data

2.4.5. Alat dan Bahan

• Bahasa Pemrograman: Python / Java / C++

• IDE: Visual Studio Code / Eclipse / PyCharm

• Alat ukur: Modul time dan memory_profiler

(untuk Python)

• Dataset: Kumpulan data acak berukuran kecil

hingga besar

2.4.6. Teknik Pengumpulan Data

• Data dikumpulkan secara langsung dari hasil

eksekusi program melalui logging otomatis

dan pencatatan performa (waktu dan memori)

selama eksperimen berlangsung.

2.4.7. Teknik Analisis Data

Analisis dilakukan dengan:

• Mengolah hasil pengujian ke dalam tabel dan

grafik

• Menggunakan software spreadsheet

(Excel/Google Sheets) atau matplotlib

(Python)

• Menarik kesimpulan berdasarkan data

kuantitatif yang didapat

Mengolah hasil pengujian ke dalam tabel dan

grafik Menggunakan software spreadsheet

(Excel/Google Sheets) atau matplotlib (Python)

Menarik kesimpulan berdasarkan data

kuantitatif yang didapat

3. HASIL DAN PEMBAHASAN

 708 | rcf-Indonesia.org

Pengujian dilakukan terhadap struktur data array

dalam berbagai skenario ukuran data. Berikut

disajikan hasil eksperimen waktu pencarian dan

penggunaan memori:

Tabel 1: Waktu Akses Data (ms)

Struktur

Data

Ukuran

Data

Sequential

Search

Binary

Search

Array 10.000 12 2

Array 100.000 105 6

Array 1.000.000 1012 11

Tabel 2: Penggunaan Memori (KB)

Struktur

Data

Ukuran

Data

Array Linked

List

 10.000 160 240

 100.000 1520 2440

 1.000.000 15.200 24.800

Grafik 1 memperlihatkan peningkatan efisiensi binary

search terhadap sequential search.

Grafik 2 menunjukkan penggunaan memori array

yang lebih kecil dibandingkan linked list untuk ukuran

data besar.

 Dalam penelitian mengenai penerapan konsep

array pada struktur data untuk peningkatan efisiensi

pencarian dan penyimpanan data, dilakukan beberapa

pengujian dengan menggunakan data dalam jumlah

bervariasi. Implementasi array diaplikasikan pada

skenario penyimpanan data statis dan semi-statis, di

mana jumlah data sudah diketahui sebelumnya atau

pertambahannya tidak terlalu dinamis. Adapun hasil

pengujian yang diperoleh sebagai berikut:

1. Kecepatan Akses Data

 Penggunaan array memungkinkan akses data secara

langsung melalui indeks (direct addressing). Misalnya,

untuk mengambil elemen ke-i, operasi dapat dilakukan

dalam waktu konstan O(1). Hal ini jauh lebih cepat

dibandingkan struktur data lain seperti linked list yang

memerlukan traversal dari node awal (O(n)).

2. Efisiensi Penyimpanan Memori

 Karena array menggunakan alokasi memori yang

kontigu, tidak ada tambahan overhead penyimpanan

pointer seperti pada linked list atau tree. Hasil

pengujian menunjukkan penggunaan memori yang

lebih efisien, terutama pada jumlah data yang besar

dan bersifat tetap.

3. Waktu Proses Pencarian

 Untuk pencarian data, array bekerja sangat efisien

dengan metode pencarian tertentu:

a. Sequential Search: membutuhkan waktu

O(n).

b. Binary Search: jika array terurut, pencarian

dapat dilakukan dengan kompleksitas O(log

n), yang secara signifikan meningkatkan

efisiensi pencarian.

c. Implementasi binary search pada dataset

yang terurut memperlihatkan penurunan

waktu pencarian hingga 60%-80% dibanding

sequential search.

4. Kemudahan Implementasi Algoritma

 Beberapa algoritma pengolahan data seperti sorting

(misalnya quicksort, mergesort) lebih mudah dan

cepat diimplementasikan pada array karena sifat

indeks yang tetap dan kontigu.

Penerapan konsep array dalam struktur data

memberikan beberapa keuntungan utama, terutama

dalam konteks efisiensi pencarian dan penyimpanan:

a. Akses Cepat dan Prediktabel:

Dengan alokasi memori kontigu dan indeks yang

tetap, array memungkinkan operasi akses data

yang cepat tanpa perlu navigasi pointer seperti

pada linked list. Hal ini sangat berguna pada

aplikasi yang membutuhkan akses data secara

acak (random access), misalnya pada sistem

database, cache, dan pemrosesan data numerik.

b. Optimal untuk Data Statis:

Array sangat efisien digunakan ketika ukuran data

telah diketahui sejak awal dan jarang berubah.

Dalam kondisi data yang dinamis (sering

bertambah atau berkurang), array dapat

mengalami keterbatasan karena memerlukan

proses realokasi memori untuk menyesuaikan

ukuran baru.

c. Keterbatasan Skalabilitas:

Salah satu kekurangan array adalah kesulitan

dalam menambah atau menghapus elemen di

tengah-tengah data. Operasi ini membutuhkan

shifting elemen yang berdampak pada efisiensi

waktu. Oleh karena itu, pada skenario data yang

sangat dinamis, struktur data lain seperti dynamic

array (misalnya ArrayList pada Java atau vector

pada C++) atau linked list lebih disarankan.

d. Kesesuaian dengan Algoritma Pencarian

Efisien:

Ketika dikombinasikan dengan pengurutan data

(sorting), array memungkinkan penggunaan

algoritma pencarian cepat seperti binary search.

Ini memperlihatkan bahwa desain struktur data

sebaiknya dipadukan dengan algoritma yang

sesuai untuk mendapatkan performa maksimal.

4. KESIMMPULAN

Berdasarkan hasil eksperimen, array terbukti

memberikan performa yang optimal untuk skenario

penyimpanan data statis dan pencarian cepat,

khususnya saat dikombinasikan dengan algoritma

binary search. Penggunaan array memberikan efisiensi

signifikan dalam waktu eksekusi dan penggunaan

memori. Namun demikian, penggunaannya perlu

dipertimbangkan kembali dalam konteks data yang

sangat dinamis karena keterbatasannya dalam

fleksibilitas ukuran dan efisiensi modifikasi data. Oleh

karena itu, dalam sistem dengan data yang sering

 709 | rcf-Indonesia.org

berubah, alternatif seperti linked list atau struktur

dinamis lainnya lebih disarankan.

REFERENSI

Anand, S., Bradley, C. E., White, R., Ramesh, V.,

Singh, K., & Bernien, H. (2024). A dual-species

Rydberg array. Nature Physics, 20(November),

1744–1751. https://doi.org/10.1038/s41567-

024-02638-2

Manetsch, H. J., Nomura, G., Bataille, E., Leung, K.

H., Lv, X., & Endres, M. (2024). A tweezer

array with 6100 highly coherent atomic qubits.

21–24. http://arxiv.org/abs/2403.12021

Mathematics, A. (2016). Buku Ajar Pendidikan

Algoritma Dan Struktur Data. 1–23.

Mulyana, A., Sukamto, A., Cahyadi, S., Priambodo,

B., Jumaryadi, Y., & Nashar, D. M. (2021).

Cara Mudah Mempelajari Algoritma dan

Struktur Data. www.blogdivapress.com

Rizki, M., Fitra, A., Effendi, A. A. S., & Ramadhani,

F. (2025). IMPLEMENTASI PYTHON DALAM

PENGOLAHAN DATA PRIBADI MAHASISWA

ILMU KOMPUTER ANGKATAN 23 PADA

UNIVERSITAS NEGERI MEDAN

MENGGUNAKAN STRUKTUR DATA LINKED

LIST. 9(1), 51–58.

Shahzad, M. F., Xu, S., Lim, W. M., Yang, X., &

Khan, Q. R. (2024). Artificial intelligence and

social media on academic performance and

mental well-being: Student perceptions of

positive impact in the age of smart learning.

Heliyon, 10(8).

https://doi.org/10.1016/j.heliyon.2024.e29523

Siahaan, E., & Tantular, U. M. (2021). Struktur Data

Struktur Data. 123.

http://dx.doi.org/10.31219/osf.io/rtupn

Trio, M., Putra, M., Warta, F., & Ani, N. (2025).

Persepsi Mahasiswa pada Aplikasi “ JStudio ”

Sebagai Alat Praktik dalam Praktikum Struktur

Data. 1(1), 23–27.

https://doi.org/10.14710/tepi.v39n1.xxxxxx

Valent, H., Sinaga, R. M., Putra, S., Halawa, P.,

Priscillia, S. A., & Ramadhani, F. (2025).

Implementasi algoritma antrian prioritas

menggunakan array di python untuk sistem

antrian layanan darurat. 9(1).

