Analisis Sistematis Penelitian Terkait Model Optimasi Penugasan Maksimum Menggunakan Metode Systematic Literature Review
Keywords:
maximum assigment problem, optimal task assignment, task allocation optimizationAbstract
Penelitian ini bertujuan untuk menganalisis perkembangan model optimasi penugasan maksimum melalui pendekatan Systematic Literature Review (SLR) berdasarkan panduan PRISMA 2020. Data diperoleh dari basis data Scopus dengan kata kunci maximum assignment problem, optimal task assignment, dan task allocation optimization pada periode 2022–2025. Dari total 351 artikel yang diidentifikasi, sebanyak 161 dihapus karena tidak memenuhi kriteria kelayakan otomatis, dan 40 artikel dikeluarkan karena tidak termasuk dalam jurnal bereputasi Q1–Q2. Setelah proses screening dan penilaian kelayakan, diperoleh 8 artikel utama yang dianalisis lebih lanjut. Hasil kajian menunjukkan bahwa penelitian terkini banyak mengintegrasikan algoritma klasik seperti Hungarian dengan pendekatan metaheuristik dan pembelajaran berbasis graf, guna meningkatkan efisiensi serta akurasi penugasan dalam sistem multi-agen. Selain itu, penggunaan Watase UAKE terbukti efektif membantu proses seleksi literatur secara transparan dan sistematis. Secara keseluruhan, tren penelitian mengarah pada pengembangan model optimasi yang lebih adaptif, terotomasi, dan relevan dengan kebutuhan sistem cerdas modern.
References
Aironi, C., Cornell, S., & Squartini, S. (2024). A Graph-Based Neural Approach to Linear Sum Assignment Problems. International Journal of Neural Systems, 34(3). https://doi.org/10.1142/S0129065724500114
Alfaro, C. A., Perez, S. L., Valencia, C. E., & Vargas, M. C. (2022). The assignment problem revisited. Optimization Letters, 16, 1531–1548. https://doi.org/10.1007/s11590-021-01791-4
Han, D., Jiang, H., Wang, L., Zhu, X., Chen, Y., & Yu, Q. (2023). Collaborative Task Allocation and Optimization Solution for Unmanned Aerial Vehicles in Search and Rescue. Drones.
Hidayat, A., & Sari, N. (2022). Penerapan PRISMA 2020 untuk Systematic Literature Review pada Penelitian Teknologi Informasi. Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(4), 567–578. https://doi.org/10.25126/jtik.094.567
Liu, H., Liao, Y., Shi, C., & Shen, J. (2023). Task Allocation of Heterogeneous Multi-Unmanned Systems Based on Improved Sheep Flock Optimization Algorithm. Future Internet.
Mada, U. G. (2025). Pemanfaatan Watase UAKE dalam Workshop Penelitian S3 UGM.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj, 372. https://doi.org/10.1136/bmj.n71
Pujiati, L. (2024). Metodologi Systematic Literature Review dalam Penelitian Manajemen: Pendekatan dan Implementasi. Jurnal Manajemen Dan Kewirausahaan Indonesia, 6(1), 45–58. https://doi.org/10.21009/jmki.061.04
Qin, L., Zhou, Z., Liu, H., Yan, Z., & Dai, Y. (2023). A Deep Reinforcement Learning-Driven Seagull Optimization Algorithm for Solving Multi-UAV Task Allocation Problem in Plateau Ecological Restoration. Drones.
Rachmawati, D. (2024). Penerapan Metode Systematic Literature Review (SLR) dalam Penelitian Ilmu Sosial di Indonesia. Jurnal Ilmu Sosial Dan Humaniora, 15(2), 101–112. https://doi.org/10.21831/jish.v15i2.23456
Sahu, S. C., & others. (2024). How to Undertake an Impactful Literature Review: Understanding Review Typologies and Methodologies. Vikalpa, 49(4). https://doi.org/10.1177/22779779241227654
Wang, S. (2023). Research on Dynamic Particle Swarm Optimization for Multi-Objective Reconnaissance Task Allocation of UAVs. Drones.
Zhang, S., Xue, Y., Zhang, H., Zhou, X., Li, K., & Liu, R. (2023). Improved Hungarian algorithm--based task scheduling optimization strategy for remote sensing big data processing. Geo-Spatial Information Science, 26(2), 192–206. https://doi.org/10.1080/10095020.2023.2178339
Zhang, X., Wang, K., Li, X., Liu, K., & Cong, Y. (2023). Joint Task Allocation and Resource Optimization Based on an Integrated Radar and Communication Multi-UAV System. Drones.
Zhang, Y., Xu, W., Ye, H., & Shi, Z. (2023). A Two-Stage Optimization Framework for UAV Fleet Sizing and Task Allocation in Emergency Logistics Using the GWO and CBBA. Drones.
Zhou, M., Li, J., Wang, C., Wang, J., Zhai, W., & Puig, V. (2024). Global Round-up Strategy Based on an Improved Hungarian Algorithm for Multi-robot Systems. Journal of Intelligent & Robotic Systems, 110, 168. https://doi.org/10.1007/s10846-024-02190-4
Zhou, Y., Lu, F., Xu, J., & Wu, L. (2023). Multi-Agent Cross-Domain Collaborative Task Allocation Problem Based on Multi-Strategy Improved Dung Beetle Optimization Algorithm. Applied Sciences.
Zhou, Z., Liu, H., Dai, Y., & Qin, L. (2023). A Tent-Lévy-Based Seagull Optimization Algorithm for the Multi-UAV Collaborative Task Allocation Problem. Applied Sciences.






