Systematic Literature Review Tentang Penerapan Analisis Primal Dual Dalam Pemecahan Masalah Optimasi Dan Pengambilan Keputusan Di Organisasi Modern

Authors

  • Yoga Tri Rizki Ananda Universitas Putra Indonesia YPTK Padang

Keywords:

primal dual analysis, linearand nonlinear programing

Abstract

Penelitian ini bertujuan melakukan Systematic Literature Review (SLR) mengenai penerapan pendekatan analisis primal–dual dalam optimasi penugasan maksimum guna meningkatkan efisiensi operasional pada organisasi modern. Proses penelusuran dilakukan melalui basis data Scopus menggunakan kata kunci Primal–Dual Analysis serta Linear and Nonlinear Programming, menghasilkan 230 publikasi awal. Setelah melalui tahapan penyaringan berdasarkan kriteria kelayakan, seperti periode publikasi (2022–2025) dan klasifikasi jurnal, hanya lima studi yang dianggap relevan untuk dianalisis lebih lanjut. Hasil kajian mengindikasikan bahwa metode optimasi primal–dual berperan penting dalam meningkatkan ketepatan pengambilan keputusan, efisiensi penggunaan sumber daya, dan efektivitas kontrol operasional di berbagai jenis organisasi. Selain itu, penelitian ini menegaskan pentingnya integrasi antara algoritma matematis dan teknologi analitik mutakhir dalam mendukung proses pengambilan keputusan strategis. Temuan ini diharapkan dapat memberikan kontribusi teoretis dan praktis bagi pengembangan model optimasi di bidang manajemen operasional.

References

Clarke, M., & others. (2024). Analysis and Recommendation System Based on PRISMA for Systematic Reviews. Computer Methods and Programs in Biomedicine Update. https://doi.org/10.1016/j.cmpbup.2024.100164

Daryalal, M., Arslan, A. N., & Bodur, M. (2023). Two–Stage and Lagrangian Dual Decision Rules for Multistage Adaptive Robust Optimization. ArXiv Preprint ArXiv:2305.06190. https://arxiv.org/abs/2305.06190

Dohba, G., Dobdinga, D., Fonchamnyo, C., & Dze, E. (2022). Primal – dual approach to environmental Kuznets curve hypothesis : A demand and supply side analyses of environmental degradation. Environmental Science and Pollution Research, 16484–16502. https://doi.org/10.1007/s11356-021-16821-y

Gong, K., & Zhang, L. (2024). Primal–Dual Algorithm for Distributed Optimization with Coupled Constraints. Journal of Optimization Theory and Applications, 201, 252–279. https://doi.org/10.1007/s10957-024-02393-7

Hossain, M., & Ameen, N. (2023). Improving Transparency and Quality in Systematic Reviews through PRISMA Guidelines. Journal of Evidence-Based Research, 12(3), 210–225. https://doi.org/10.1080/00000000.2023.112233

Kitamura, T., & coauthors. (2024). A Policy Gradient Primal–Dual Algorithm for Constrained MDPs with Applications. ArXiv Preprint ArXiv:2401.17780. https://arxiv.org/abs/2401.17780

Li, B., Zhao, C., & Wang, R. (2024). Pareto-Optimal Strategies for Multi-Agent Systems Using Game-Theoretic Optimization. Expert Systems with Applications, 238, 122059. https://doi.org/10.1016/j.eswa.2024.122059

Lu, J., Fang, Z., Zhang, Z., Liu, Y., Xu, Y., Wang, T., & Yang, Y. (2025). Progressive Linear Programming Optimality Method Based on Decomposing Nonlinear Functions for Short-Term Cascade Hydropower Scheduling.

Melo, W., Fampa, M., & Raupp, F. (2020). Two linear approximation algorithms for convex mixed integer nonlinear programming. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03722-5

Nasir, A., & Mulyono, S. (2023). Model WATaSE dalam Pengembangan Kajian Literatur Sistematis. Jurnal Ilmiah Pendidikan Dan Penelitian Sosial, 9(2), 55–68. https://doi.org/10.33369/jipps.9.2.55-68

Roth, M., Franke, G., & Rinderknecht, S. (2022). A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models.

Skibik, T., Member, G. S., Nicotra, M. M., & Optimization, A. T. (2023). Analysis of Time-Distributed Model Predictive Control When Using a Regularized Primal – Dual Gradient Optimizer. 7, 235–240.

Zhang, X., Tang, W., Wang, J., Zhang, S., & Zhang, K. (2025). Parallel Primal–Dual Method with Linearization for Structured Convex Optimization. Axioms, 14(2), 104. https://doi.org/10.3390/axioms14020104

Downloads

Published

26-01-2026