TINJAUAN LITERATUR SISTEMATIS TERHADAP METODE HISTOGRAM OF ORIENTED GRADIENTS (HOG) PADA PENGOLAHAN CITRA

Main Article Content

Okta Veza
Nofri Yudi Arifin

Abstract

Histogram of Oriented Gradients (HOG) merupakan metode ekstraksi fitur berbasis gradien yang banyak digunakan dalam visi komputer karena efisiensi dan kemampuannya merepresentasikan struktur tepi objek. Dalam bidang inspeksi nondestruktif pengelasan berbasis citra, HOG telah diterapkan untuk mendeteksi dan mengklasifikasikan cacat pengelasan. Namun, sebagian besar penelitian masih menggunakan konfigurasi HOG konvensional yang kurang adaptif terhadap variasi intensitas, noise, dan kompleksitas pola cacat pengelasan. Penelitian ini menyajikan tinjauan literatur sistematis terhadap penerapan metode HOG pada inspeksi cacat pengelasan berdasarkan artikel-artikel ilmiah yang terindeks Scopus. Literatur diklasifikasikan berdasarkan kesamaan metode dan objek penelitian untuk mengidentifikasi tren, keunggulan, serta keterbatasan metode yang ada. Hasil kajian menunjukkan bahwa penerapan HOG secara spesifik pada objek pengelasan masih terbatas, sehingga membuka peluang pengembangan metode HOG yang lebih adaptif dan robust. Temuan ini diharapkan menjadi dasar pengembangan metode ekstraksi fitur yang lebih akurat dan aplikatif dalam mendukung inspeksi pengelasan di lingkungan industri.

Article Details

Section
Articles

References

Agrawal, A., Jadhav, N., Gaur, A., Jeswani, S., & Kshirsagar, A, "(2022)", Improving the accuracy of object detection in low light conditions using multiple Retinex theory-based image enhancement algorithms. 2022 2nd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 1–5.

Alamy, U, "G., Marliana, E., Wahjudi, A., Batan, I", M. L., & Nurahmi, L. (2022). Flash cacat detection system of friction stir welding process based on convolutional neural networks for AA 6061-T651. 2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE), 286–291.

Aljasem, M., Mayyas, M., Duke, T, "K., Shilov, M., Islam, Z., Abouheaf, M., & Gueaieb, W", (2024, June). Swish-ResNet method for faulty weld detection. In 2024 IEEE International Symposium on Robotic and Sensors Environments (ROSE) (pp. 1–7). IEEE.

Araar, I, "E., Benammar, A., Drai, R., & Benyahia, A", (2021). A GLCM-based approach for the clustering of weld joint images. 2021 5th International Conference on Intelligent Computing in Data Sciences (ICDS).

Ariefa, I., & Wikarta, A, "(2023, December)", Convolutional neural network (CNN) technology to detect welding cacats in motorcycle frames using transfer learning and optimizer. In 2023 International Workshop on Artificial Intelligence and Image Processing (IWAIIP) (pp. 331–336). IEEE.

Assalé, F, "Y", P., Kouao, A. F. A., & Kessé, M. T. (2025). Machine learning and neural networks in predicting grain-size of sandy formations. Results in Earth Sciences, 19, 100105.

Bansal, A., Vettivel, S, "C., Kumar, M., & Agarwal, M", (2023). Weld cacat identification and characterization in radiographic images using deep learning: Review. Engineering Research Express, 5(2), 025079.

Baskaran, R., & Fernando, P, "(2021)", Steel frame structure cacat detection using image processing and artificial intelligence. 2021 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON).

Berehulyak, O., Vorobel, R., Mandziy, T., & Ivasenko, I, "(2022)", Segmentation of partially shadowed rust images. Proceedings of the 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 564–568.

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., & Ghayvat, H, "(2021)", CNN variants for computer vision: History, architecture, application, challenges, and future scope. Electronics, 10(20), 2470.

Bomfim, L, "D", S., Pedrini, H., & Vidal, A. C. (2023). A combined noisy borehole image log segmentation method. International Conference on Systems, Signals, and Image Processing (IWSSIP), 2023-June, 1.

Banescu, I, "E., Badea, A", M., Necula, L. A., Drăgoi, I. C., Coandă, H.-G., & Coltuc, D. (2025). Reversible contrast stretching for digital images. Proceedings of the 2025 International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–6. IEEE.

Bhagya, A., & Perumal, S, "(2024)", Diverse image processing techniques for machine learning methods. Proceedings of the 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS). IEEE.

Chang, Y., & Wang, W, "(2021)", A deep learning-based weld cacat classification method using radiographic images with a cylindrical projection. IEEE Transactions on Instrumentation and Measurement, 70.

Chen, Y., Li, X., Wang, Y., & Zhang, J, "(2022)", Image cropping for efficient object detection. IEEE Transactions on Image Processing, 31(1), 231–242.

Cheng, J., Zhang, R., & Zhang, D, "(2022)", Classification of welding cacats based on convolutional neural networks and electromagnetic eddy current testing. Proceedings of the 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT), 471–476.

Cam, N, "T., Hung, T", Q., & Nam, P. T. (2025). uitPDF-MalDe: Malicious Portable Document Format files detection using multi machine learning models. Engineering Applications of Artificial Intelligence, 134, 107224.

Castleman, K, "R", (2023). Image digitization and display. In Microscope Image Processing (2nd ed., pp. 27–45). Academic Press.

Cai, W., Wang, J., Liu, G., Hu, J., Li, X., & Guo, D, "(2025)", A preprocessing method for moving vehicle images based on satellite images. 2025 5th International Conference on Consumer Electronics and Computer Engineering (ICCECE).

Chen, G., Fan, Z., She, B., Xing, S., Tao, W., Zhao, H., & Lv, N, "(2024)", High accuracy vision-laser post-welding cacat detection and segmentation method based on convolutional neural networks. IEEE Access, 12, 1–13.

Devendiran, S., Nedungadi, P., & Raman, R, "(2024, March)", Handwritten text recognition using VGG19 and HOG feature descriptors. In 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI) (Vol. 2, pp. 1–4). IEEE.

Dias, B, "M., Fernandez, V., Lucena, R", F., & Sobrinho, J. M. A. (2020). Petrographic microscope digital image processing technique for texture and microstructure interpretation of earth materials. Earth Science Research, 9(1), 58–71.

Ding, Z., Wu, Y., Xiong, X., & Zhu, X, "(2022a)", Chip welding short circuit cacat detection based on active learning. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), 997–1000.

Ding, Z., Wu, Y., Xiong, X., & Zhu, X, "(2022b)", Polarity detection of welded chip based on active learning. 2022 International Conference on High Performance Big Data and Intelligent Systems (HDIS), 105–109.

Długosz, Z., Talaska, T., & Długosz, R, "(2024, June)", A method supporting hardware implementation of vector quantization module in HOG algorithm. In 2024 31st International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES) (pp. 75–79). IEEE.

Dong, X., Taylor, C, "J., & Cootes, T", F. (2021). A random forest-based automatic inspection system for aerospace welds in X-ray images. IEEE Transactions on Automation Science and Engineering, 18(4), 2128–2141.

Dasari, S, "K., Cheddad, A., & Palmquist, J", (2020). Melt-pool defects classification for additive manufactured components in aerospace use-case.

El Hachem, C., Perrot, G., Painvin, L., Ernst-Desmulier, J, "B., & Couturier, R", (2021). Welding seam classification in the automotive industry using deep learning algorithms. Proceedings - 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT 2021), 235–240.

Enriquez, M, "L., Concepcion, R., Relano, R", J., Francisco, K., Mayol, A. P., Espanola, J., Vicerra, R. R., Bandala, A., Co, H., & Dadios, E. (2021). Prediction of weld current using deep transfer image networks based on weld signatures for quality control. 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM 2021).

Fan, X., Gao, X., Liu, G., Ma, N., & Zhang, Y, "(2021)", Research and prospect of welding monitoring technology based on machine vision. International Journal of Advanced Manufacturing Technology, 115(11–12), 3365–3391.

Faye, D., Azzag, H., Lebbah, M., & Bouchaffra, D, "(2024)", Adaptive context normalization: A boost for deep learning in image processing. Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE.

Frasco-García, O, "D., García-García, V., Reyes-Calderón, F., Hernández-Cristóbal, O., & Garnica-González, P", (2022). Investigation of weld cacats, microstructural, and mechanical features of TWIP and austenitic stainless steel dissimilar joints by pulsed GTAW process. The International Journal of Advanced Manufacturing Technology, 119(9), 6371–6392.

Fu, Q., Liu, J., Zhang, X., Zhang, Y., Ou, Y., Jiao, R., Li, C., & Mazzanti, G, "(2023)", A small-sized cacat detection method for overhead transmission lines based on convolutional neural networks. IEEE Transactions on Instrumentation and Measurement, 72.

Ganesan, P., Joseph, L, "M", I. Leo, Saji, G., Chandrasekaran, B., Manigandan, E., & Janakiraman, V. (2024). Comparative analysis of decorrelation and contrast stretching for multispectral color image enhancement. 2024 International Conference on Electronics, Communication and Signal Processing (ICECSP), 1–6. IEEE.

Gaidhane, V, "K., & Kolhe, S", R. (2024, May). A review on advances in computer-aided weld cacats detection. In 2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC) (pp. 1–5). IEEE.

Gao, B., Zhao, H., & Miao, X, "(2022)", Recognition of radiographic weld cacats based on combining ResNet18 and Q-learning for imbalanced train dataset. Proceedings of the 11th Electrical Power, Electronics, Communications, Control, and Informatics Seminar (EECCIS 2022), 328–332.

Gao, Y., Zhong, P., Tang, X., Hu, H., & Xu, P, "(2021)", Feature extraction of laser welding pool image and application in welding quality identification. IEEE Access, 9, 120193–120202.

Goyal, S, "S., Kumar, A., Singh, R., Sharma, P., & Jain, P", K. (2022). Analysis of welding damage and its causes: A review. Journal of Welding and Joining.

Guo, R., Liu, H., Xie, G., & Zhang, Y, "(2021)", Weld cacat detection from imbalanced radiographic images based on contrast enhancement conditional generative adversarial network and transfer learning. IEEE Sensors Journal, 21(9), 10844–10853.

Harkin, R., Wu, H., Nikam, S., Yin, S., Lupoi, R., Walls, P., & McFadden, S, "(2023)", Evaluation of the role of hatch-spacing variation in a lack-of-fusion cacat prediction criterion for laser-based powder bed fusion processes. The International Journal of Advanced Manufacturing Technology, 126(1), 659–673.

Harudin, N., Norizhar, M, "A", H., Marlan, Z. M., & Selamat, F. E. B. (2023). Development of an autograding system for weld bead surface quality using feature extraction and Mahalanobis-Taguchi system. International Conference on Smart Computing and Application (ICSCA 2023).

Hong, Y., Yang, M., Chang, B., & Du, D, "(2023)", Filter-PCA-based process monitoring and cacat identification during climbing helium arc welding process using DE-SVM. IEEE Transactions on Industrial Electronics, 70(7), 7353–7362.

Hong, Y., Yang, M., Jiang, Y., Du, D., & Chang, B, "(2023)", Real-time quality monitoring of ultrathin sheets edge welding based on microvision sensing and SOCIFS-SVM. IEEE Transactions on Industrial Informatics, 19(4), 5506–5516.

Ji, A., Xue, X., Zhang, L., Luo, X., & Man, Q, "(2023)", A transformer-based deep learning method for automatic pixel-level crack detection and feature quantification. Engineering, Construction and Architectural Management.

Jiang, B, "T., Yan, S", G., Huang, J., & Zhang, B. X. (2021). Ultrasonic total focusing imaging of cacats in anisotropic austenitic stainless steel weld. Proceedings of the 2020 15th Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA 2020), 212–216.

Most read articles by the same author(s)