Rancang Bangun Sistem Pendeteksi Kantuk Untuk Keamanan Berkendara Berbasis Website
Main Article Content
Abstract
Traffic accidents are often caused by drowsy drivers, which significantly reduce concentration, alertness, and reaction time while driving. This study aims to design and develop a web-based drowsiness detection system using a camera as the primary visual sensor. The system integrates digital image processing and artificial intelligence techniques to analyze the driver’s eye and mouth movements in real time with a high level of accuracy. When early signs of drowsiness are detected, the system provides an instant alert through a web-based interface that can be accessed both locally and remotely. Experimental results show that the system can detect drowsiness with 92% accuracy, an average response time of 1.2 seconds, and stable performance under various lighting and environmental conditions. The implementation of this system proves to be effective, reliable, and low-cost in preventing accidents caused by fatigue. Therefore, this innovative technology offers a practical, efficient, scalable, and affordable solution to enhance road safety and driver awareness for both private and commercial vehicles.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
M. Trianah, D. W. Saputra, and S. Irnaninsih, “Pengaruh Sejarah Perkembangan Alat Transportasi Darat, Laut, dan Udara di Indonesia serta Dampaknya terhadap Masyarakat,” Semin. Nas. dan Publ. Ilm., pp. 2584–2592, 2024.
N. F. Muto’in and A. Utami, “Analisis Tingkat Kecelakaan Lalu Lintas Menggunakan Metode Accident Rate Dan Equivalent Accident Number (EAN) Di Kota Magelang,” J. Rekayasa Sipil, vol. 18, no. 1, p. 60, 2022, doi: 10.25077/jrs.18.1.60-67.2022.
“angka-kecelakaan-2023-meningkat-pelaku @ www.humaspolresbukittinggi.com.” [Online]. Available: https://www.humaspolresbukittinggi.com/2024/01/angka-kecelakaan-2023-meningkat-pelaku.html#google_vignette
Nurdayati dkk, “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” vol. 3, no. 5, p. 6, 2021.
M. Esculenta M and A. Faqih, “Analisis Pembacaan Sensor Alkohol Terhadap Variasi Jarak Pada Pengemudi Untuk Mengurangi Potensi Kecelakaan,” J. Eltek, vol. 17, no. 1, p. 116, 2019, doi: 10.33795/eltek.v17i1.136.
N. A. Wahyuningsih, “Hubungan Masa Kerja, Sikap, Dan Kelelahan Terhadap Perilaku Aman Berkendara Pada Supir Mini Bus Di Pt. Budi Santoso Jaya,” Bhamada Occup. Heal. Saf. Environ. J., vol. 1, no. 1, pp. 10–17, 2023, doi: 10.36308/bohsej.v1i1.571.
A. A. Hakim and R. Salsabila, Manajemen Sistem Informasi Global, vol. 1, no. 1. 2023. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=3ezRW6H4tE0C&oi=fnd&pg=PP4&dq=manajemen&ots=57_wu3imyp&sig=XvGHPoNz6L8rcktlpwcBxHjJEPs
B. R. A. Putri, “Analisis dan Perancangan Sistem Informasi Manajemen dengan Notasi UML,” Jupiter Publ. Ilmu Keteknikan Ind. Tek. Elektro dan Inform., vol. 3, no. 1, pp. 103–113, 2025, [Online]. Available: https://journal.aritekin.or.id/index.php/Jupiter
J. Jeprianto and W. Widianto, “Sistem Informasi Perancangan Kartu Anggota Perpustakaan Secara Online Berbasis Android Pada Dinas Perpustakaan Dan Kearsipan Kab Pringsewu,” J. Softw. Eng. Technol., vol. 4, no. 1, p. 1, 2024, doi: 10.69769/seat.v4i1.172.
I. Cholissodin and A. A. Soebroto, “AI , MACHINE LEARNING & DEEP LEARNING ( Teori & Implementasi ),” no. December, 2021.
S. S. Mukrimaa et al., “Machine Learning Teori, Studi Kasus dan Implementasi Menggunakan Python,” J. Penelit. Pendidik. Guru Sekol. Dasar, vol. 6, no. August, p. 128, 20AD, doi: 10.5281/zenodo.5113507.
N. M. Surbakti et al., “Penggunaan Bahasa Pemrograman Python dalam Pembelajaran Kalkulus Fungsi Dua Variabel,” Algoritm. J. Mat. Ilmu Pengetah. Alam, Kebumian dan Angkasa, vol. 2, no. 3, pp. 98–107, 2024, doi: 10.62383/algoritma.v2i3.67.