Penerapan Data Mining Memprediksi Penjualan Obat Menggunakan Metode K-Nearest Neighbor (Studi Kasus : Apotek Difana)
Main Article Content
Abstract
The development of information technology in the digital era has provided opportunities for various sectors, including the pharmaceutical industry, to improve operational efficiency and service quality. One of the main challenges faced by pharmacies is inventory management, where both stockouts and overstocks often occur due to the limitations of conventional prediction methods. This study aims to apply data mining techniques using the K-Nearest Neighbor (KNN) algorithm to predict drug sales at Apotik Difana. KNN is chosen because it is simple yet effective in recognizing sales patterns from historical data. A web-based prediction system was developed to facilitate accessibility and usability for the pharmacy. The scope of this study focuses on historical sales data without considering external factors, and only KNN is used without comparison to other algorithms. The results are expected to assist the pharmacy in determining the right type and quantity of drugs, optimizing inventory management, reducing losses from expired drugs, and improving customer service quality. Furthermore, this research provides a theoretical contribution to the development of data mining in sales prediction and offers a practical, technology-based solution for pharmaceutical inventory management.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Siswo Adiguno, Yohanni Syahra, and Milfa Yetri, “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda,” Jun. 2022.
M. Faisal, W. S. Utami, and S. Parmica, “BY-SA) Implementasi Algoritma K-Nearest Neighbor (KNN) Dalam Memprediksi Indeks Kemiskinan”.
R. K. Rizal Dzulkarnaen1, “APLIKASI PENGELOLAAN DATA PASIEN DI APOTEK BERBASIS ANDROID,” Oct. 2019.
A. Nugraha, O. Nurdiawan, and G. Dwilestari, “PENERAPAN DATA MINING METODE K-MEANS CLUSTERING UNTUK ANALISA PENJUALAN PADA TOKO YANA SPORT,” 2022.
A. Naufal Hilmi et al., “Implementasi Algoritma K-Nearest Neighbor (KNN) untuk Identifikasi Penyakit pada Tanaman Jeruk Berdasarkan Citra Daun,” no. 2, pp. 107–117, 2024, doi: 10.62951/router.v2i2.78.
I. Hussain Alamyar and E. Nurmiati, “PENGARUH KECANGGIHAN TEKNOLOGI INFORMASI TERHADAP MANAJEMEN PENGETAHUAN,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 3, no. 1, pp. 64–70, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
M. Sumiati, R. Abdillah, and A. Cahyo, “Pemodelan UML untuk Sistem Informasi Persewaan Alat Pesta”.
B. I. Nugroho, Z. Ma’arif, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Metode Klasifikasi Untuk Menganalisa Penyalahgunaan Sosial Media,” 2022. [Online]. Available: www.journal.peradaban.ac.id
W. Sudrajat and I. Cholid, “K-NEAREST NEIGHBOR (K-NN) UNTUK PENANGANAN MISSING VALUE PADA DATA UMKM,” 2023.
A. Suheri, S. Widaningsih, and H. Refiyana, “Sistem Informasi Pariwisata Berbasis Website Studi Kasus Sindangbarang Cianjur Selatan,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 17, no. 4, pp. 175–184, Jan. 2023, doi: 10.35969/interkom.v17i4.278.
A. Ni’amillah, A. Arif Alfin, and I. Kurniasari, “Siklus Hidup Pengembangan Sistem Basis Data Pada Sistem Informasi Buku Tamu di Badan Pusat Statistik Kabupaten Kediri Menggunakan MySQL,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 6, no. 1, 2023.
Baiq Ayu Indah Wardaningsih, Amri Muliawan Nur, and Imam Fathurrahman, “AplikasiPenyedia Lowongan Kerja Di Wilayah NTB Berbasis Web Menggunakan Framework Laravel Dan Mysql,” Jan. 2022.