Systematic Literature Review Dengan Metode Prisma: Integritas Fungsi Manajemen Sumber Daya Manusia Sebagai Instrumen Pengambilan Keputusan Organisasi Yang Efektif
DOI:
https://doi.org/10.62357/joseamb.v4i3.847Keywords:
Manajemen Sumber Daya Manusia, Intergritas, Pengambilan Keputusan, Prisma, Sistematis (SLR)Abstract
Tujuan dari penelitian ini adalah untuk mengevaluasi bagaimana integritas dalam fungsi manajemen sumber daya manusia (MSDM) berfungsi sebagai alat dalam pengambilan keputusan yang efisien dalam organisasi. Di tengah kemajuan digital dan persaingan internasional, MSDM tidak hanya beroperasi pada level administratif, tetapi juga menjadi bagian yang strategis dalam mendukung keputusan yang didasarkan pada data, serta adil dan terbuka. Metode yang digunakan dalam penelitian ini adalah Tinjauan Literatur Sistematis (SLR) dengan pendekatan PRISMA, serta menggunakan aplikasi Watase UAKE untuk mengumpulkan artikel dari basis data Scopus. Sebanyak 245 artikel berhasil ditemukan, dengan 14 artikel yang sesuai dengan kriteria inklusi (tahun 2022–2025, jurnal Q1–Q4). Temuan dari kajian ini menunjukkan bahwa integritas MSDM memainkan peranan penting dalam meningkatkan efektivitas keputusan organisasi melalui kebijakan yang adil, proses yang transparan, dan nilai yang konsisten. Teknologi, seperti machine learning, big data, dan Enterprise Resource Planning (ERP), juga membantu memperkuat posisi HR dalam memberikan data strategis. Meski begitu, tantangan masih ada, termasuk bias dalam rekruitmen serta kurangnya evaluasi terhadap kebijakan SDM. Penelitian ini menegaskan bahwa integritas adalah elemen fundamental bagi organisasi dalam membangun sistem pengambilan keputusan yang etis, tepat, dan berkelanjutan.
References
Alanazi, S. A., Shabbir, M., Alshammari, N., Alruwaili, M., Hussain, I., & Ahmad, F. (2023). Prediction of Emotional Empathy in Intelligent Agents to Facilitate Precise Social Interaction. Applied Sciences (Switzerland), 13(2). https://doi.org/10.3390/app13021163
Barber Pérez, P., & González López-Valcárcel, B. (2024). Experiences in human resources planning for health: The case of physicians. Data and models. SESPAS Report 2024. Gaceta Sanitaria, 38, 102365. https://doi.org/10.1016/j.gaceta.2024.102365
Basana, S. R., Malelak, M. I., Siagian, H., Tarigan, R. S., Tarigan, Z. J. H., & Nasir, Z. A. Bin. (2025). Rethinking operational decisions making: Strategic drivers from management commitment, supply chain transparency and integration. Decision Science Letters, 14(4), 837–848. https://doi.org/10.5267/j.dsl.2025.8.005
Blom, R., Voorn, B., & Borst, R. T. (2024). HRM autonomy, integration and performance in government agencies: tests of necessity and sufficiency. Public Management Review, 26(5), 1223–1241. https://doi.org/10.1080/14719037.2022.2145348
Cachón-Rodríguez, G., Blanco-González, A., Prado-Román, C., & Del-Castillo-Feito, C. (2022). How sustainable human resources management helps in the evaluation and planning of employee loyalty and retention: Can social capital make a difference? Evaluation and Program Planning, 95(September). https://doi.org/10.1016/j.evalprogplan.2022.102171
Chung, C., & Sparrow, P. (2024). Exploring the configuration of international HRM strategies for global integration and local responsiveness in MNEs. International Journal of Human Resource Management, 35(11), 1943–1969. https://doi.org/10.1080/09585192.2024.2320768
Crea-Arsenio, M., Baumann, A., & Blythe, J. (2023). The changing profile of the internationally educated nurse workforce: Post-pandemic implications for health human resource planning. Healthcare Management Forum, 36(6), 388–392. https://doi.org/10.1177/08404704231198026
Edwards, M. R., Charlwood, A., Guenole, N., & Marler, J. (2024). HR analytics: An emerging field finding its place in the world alongside simmering ethical challenges. Human Resource Management Journal, 34(2), 326–336. https://doi.org/10.1111/1748-8583.12435
Faeni, D. P., Faeni, R. P., Basrowi, & Sungkono. (2025). Green HRM for sustainable aviation: An integration evaluation using PLS-SEM and fsQCA. Environmental Challenges, 20(July). https://doi.org/10.1016/j.envc.2025.101232
Gülten, H., & Baraçlı, H. (2024). A Machine Learning-Based Forecast Model for Career Planning in Human Resource Management: A Case Study of the Turkish Post Corporation. Applied Sciences (Switzerland), 14(15). https://doi.org/10.3390/app14156679
Kiratsoudis, S., & Tsiantos, V. (2024). Advanced Integration of ES-MADM II in HRM: A Balanced Approach to Appraisal and Promotion Decisions. Information (Switzerland), 15(12). https://doi.org/10.3390/info15120767
Madanchian, M., & Taherdoost, H. (2025). Applications of Multi-Criteria Decision Making in Information Systems for Strategic and Operational Decisions. Computers, 14(6), 1–21. https://doi.org/10.3390/computers14060208
Mthupha, T. P., & Bruhns, E. (2022). Human resource factors affecting enterprise resource planning acceptance. SA Journal of Human Resource Management, 20, 1–11. https://doi.org/10.4102/sajhrm.v20i0.1746
Omidi, A., & Dal Zotto, C. (2022). Socially Responsible Human Resource Management: A Systematic Literature Review and Research Agenda. Sustainability (Switzerland), 14(4). https://doi.org/10.3390/su14042116
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj, 372. https://doi.org/10.1136/bmj.n71
Salehzadeh, R., & Ziaeian, M. (2024). Decision making in human resource management: a systematic review of the applications of analytic hierarchy process. Frontiers in Psychology, 15(August), 1–18. https://doi.org/10.3389/fpsyg.2024.1400772
Strohmeier, S. (2020). Digital human resource management: A conceptual clarification. German Journal of Human Resource Management, 34(3), 345–365. https://doi.org/10.1177/2397002220921131
Van Rensburg, B. J., Kotze, C., Moxley, K., Subramaney, U., Zingela, Z., & Seedat, S. (2022). Profile of the current psychiatrist workforce in South Africa: establishing a baseline for human resource planning and strategy. Health Policy and Planning, 37(4), 492–504. https://doi.org/10.1093/heapol/czab144
Yuan, S., Qi, Q., Dai, E., & Liang, Y. (2022). Human Resource Planning and Configuration Based on Machine Learning. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/3605722
Zhao, Y. (2024). Development of big data assisted effective enterprise resource planning framework for smart human resource management. PLoS ONE, 19(5 May), 1–28. https://doi.org/10.1371/journal.pone.0303297







