Implementation Of Term Frequency-Inverse Document Frequency (TF-IDF) Algorithm On Halal Network International (HNI) Product Search Feature
Main Article Content
Abstract
Halal Network International (HNI) products already have around 100 products which are divided into three categories, namely Herbs Products, Health Food & Beverages, and Cosmetics & Home Care. These products are published through an electronic catalog that provides product information and search features to facilitate users. The mismatch between keywords and product descriptions causes the search to fail to display relevant results. To overcome this problem, the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm is implemented in the search feature. This algorithm is used to calculate the weight of each word in the product description and determine the relevance of the keywords entered by the user. The system is built with React.js framework on the frontend, Node.js on the backend, and PostgreSQL as the database. Based on the test results, the average precision value is 71%, recall 85% and accuracy 73%. These results show that the TF-IDF algorithm is effective in improving the relevance of product search results.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Z. U. Nukha, R. R. Kurniati, and R. N. Hardati, “Pengaruh Sertifikasi Halal, Harga dan Kualitas Produk terhadap Kepuasan Konsumen Melalui Keputusan Pembelian,” Jiagabi, vol. 10, no. 1, pp. 75–84, 2021, [Online]. Available: https://jim.unisma.ac.id/index.php/jiagabi/article/viewFile/9981/7912
G. C. Putra, N. P. Pandawani, and M. E. A. Citra, “Peningkatan Kualitas Produk Herbal dan Kosmetika Natural Ba,” J. Bakti Sar., vol. 04, no. 02, pp. 91–100, 2015, [Online]. Available: https://media.neliti.com/media/publications/74815-ID-peningkatan-kualitas-produk-herbal-dan-k.pdf
R. Wati, “Perancangan E-Katalog Berbasis Web Pada RR Collection Sampit Sebagai Media Branding Menggunakan Aplikasi Figma,” EJECTS E-Journal Comput. Technol. Informations Syst., vol. 2, no. 1, pp. 8–13, 2022.
S. F. Kusuma, T. Badriyah, P. Wibowo, R. Faradisa, and S. Huda, “Optimalisasi Fitur Pencarian Pada E-Catalog Menggunakan Query Expansion Dan Algoritma TF-IDF,” Techno.Com, vol. 22, no. 3, pp. 703–711, 2023, doi: 10.33633/tc.v22i3.8698.
Ardianzah, Roni, and P. . Husni Thamrin, S.T, M.T, “Pengembangan Sistem Pencarian pada Aplikasi Skripsi untuk Meningkatkan Hasil Pencarian Judul,” Universitas Muhammadiyah Surakarta, 2024. [Online]. Available: https://eprints.ums.ac.id/120772/
D. Asmarajati, “Analisis Perbandingan Algoritma Tf-Idf Dengan Sql Query Untuk Kasus Pencarian Pada Sistem Informasi Dokumentasi Arsip (Sidokar),” Device, vol. 10, no. 1, pp. 1–8, 2020, doi: 10.32699/device.v10i1.1478.
N. Ani, D. Y. Sinaga, N. Junior, and M. D. Munggaran, “Penerapan Algoritma Term Frequency-Inverse Document Frequency ( TF- IDF ) Untuk Fitur Pencarian Dokumen Standar Nasional Indonesia,” J. Sci. Appl. informatics, vol. 6, no. 3, pp. 517–522, 2023, [Online]. Available: https://jurnal.umb.ac.id/index.php/JSAI/article/view/6504
K. Djunaidi, R. F. Ningrum, D. T. Kusuma, and K. M. Saradiba, “Pencarian Fungsional Obat Menggunakan Algoritma Tf-Idf Dan Cosine Similarity,” PETIRPengkajian dan Penerapan Tek. Inform., vol. 17, no. 1, pp. 77–83, 2024.
S. N. Cahyani and G. W. Saraswati, “Implementation of Support Vector Machine Method in Classifying School Library Books With Combination of Tf-Idf and Word2Vec,” J. Tek. Inform., vol. 4, no. 6, pp. 1555–1566, 2023, doi: 10.52436/1.jutif.2023.4.6.1536.
A. Irvandani, “Sistem Rekomendasi Fotgrafer dengan Metode Haversine dan TF-IDF di Malang Raya,” InstitutTeknologi Nasional Malang, 2020.
H. Sari, G. L. Ginting, T. Zebua, and Mesran, “Penerapan Algoritma Text Mining dan TF-IDF Untuk Pengelompokan Topik Skripsi Pada Aplikasi Repository STMIK Budi Darma,” Terap. Inform. Nusant., vol. 2, no. 7, pp. 414–432, 2021, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin
Y. Dewantara, “Perhitungan Kapasitas Baterai dan Arus Komponen pada AR.Drone Quadcopter untuk Estimasi Waktu dan Jarak Terbang,” Universitas Brawijaya Malang, 2011. [Online]. Available: https://repository.dinus.ac.id/docs/ajar/5a._handout
D. F. D. N. Mulyono Apriyano, “Metodologi Penelitian Pertanian,” Metodol. Penelit. Pertan., pp. 1–10, 2021.
W. R. Chaniago, R. Hafsari, R. A. Sari, and M. Ardiansyah, “Perancangan Sistem Informasi Inventory Berbasis Web pada PT. Bintang Oriental,” J. Sist. Inf., vol. 8, no. 5, pp. 1–6, 2024.
M. Badrul, “Penerapan Metode waterfall untuk Perancangan Sistem Informasi Inventory Pada Toko Keramik Bintang Terang,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 8, no. 2, pp. 47–52, 2021, doi: 10.30656/prosisko.v8i2.3852.
P. R. Cahyani, L. Maylinasari, S. A. Ambami, and B. R. Putra, “Analisis Dan Desain Sistem Aplikasi Kantin Elektronik (E-Canteen) Bagi Mahasiswa Dan Staff Universitas,” J. Digit. Bus. Innov. Manag., vol. 2, no. 2, pp. 164–179, 2023, doi: 10.26740/jdbim.v2i2.58084.
S. Sandfreni, M. B. Ulum, and A. H. Azizah, “Analisis Perancangan Sistem Informasi Pusat Studi Pada Fakultas Ilmu Komputer Universitas Esa Unggul,” Sebatik, vol. 25, no. 2, pp. 345–356, 2021, doi: 10.46984/sebatik.v25i2.1587.
M. S. I. Mustakim, Deyidi Mokoginta, Steiva Amerlien Sandra Wowiling and O. V. Indra, Ade Suparman, “Perancangan Sistem Informasi Penggajian Berbasis Web Dengan Metode Waterfall,” J. Cakrawala Inf., vol. 2, no. 1, pp. 59–68, 2022, doi: 10.54066/jci.v2i1.176.
J. Simangunsong, A. Voutama, and H. Hannie, “Rancang Bangun Sistem Informasi Online Marketplace Berbasis Web Application,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1261–1268, 2023, doi: 10.36040/jati.v7i2.6793.
E. U. P. T. Xyz, “PERANCANGAN WIREFRAME DAN MOCKUP SISTEM,” vol. 7, no. 1, pp. 28–35, 2025, doi: 10.55642/eatij.v7i01.966.
R. Al Rasyid and D. H. U. Ningsih, “Penerapan Algoritma TF-IDF dan Cosine Similarity untuk Query Pencarian Pada Dataset Destinasi Wisata,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 170–178, 2024, doi: 10.35870/jtik.v8i1.1416.
M. Nurjannah, Hamdani, and I. F. Astuti, “Penerapan Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) untuk Text Mining,” J. Inform. Mulawarman, vol. 8, no. 3, pp. 110–113, 2013.
M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, pp. 640–651, 2021, doi: 10.30865/mib.v5i2.2937.
M. Fadli and R. A. Saputra, “Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke,” JT J. Tek., vol. 12, no. 02, pp. 72–80, 2023, [Online]. Available: http://jurnal.umt.ac.id/index.php/jt/index
F. K. Kartono, S. Nursaadah, M. R. Nugroho, and D. A. Tama, “Pengujian Black Box Testing Pada Sistem Website Osha Snack : Pendekatan Teknik Boundary Value Analysis,” vol. 06, no. 02, pp. 754–766, 2024.