Kajian Sistematis Parameter Learning Analytics Sebagai Dasar Pengembangan Framework Evaluasi Learning Management System

Main Article Content

Viska Armalina
Wisnu Hera Pamungkas
Istia Budi
Sufiana

Abstract

Kajian ini memetakan parameter-parameter kunci Learning Analytics (LA) sebagai dasar penyusunan kerangka evaluasi e-learning di pendidikan tinggi. Melalui telaah literatur sistematis (PRISMA) terhadap publikasi 2019–2025, peneliti mengidentifikasi enam rumpun indikator yang saling menopang: keterlibatan (engagement), ketepatan waktu, asesmen dan performa akademik, interaksi sosial, regulasi diri dan arah perilaku, serta tata kelola (privasi, fairness). Temuan menunjukkan pergeseran dari perhitungan aktivitas ke kualitas keterlibatan dan pola temporal/sekuensial yang lebih prediktif, serta meningkatnya kebutuhan model yang dapat dijelaskan dan ditindaklanjuti. Hasil pemetaan dirangkum sebagai kamus parameter berikut panduan ekstraksi (definisi, satuan, jendela waktu) dan starter set indikator yang siap diterapkan. Diusulkan pula kerangka tiga langkah—Data→Indikator, Analitik→Keputusan, dan Umpan Balik Tertutup—untuk menautkan sinyal ke tindakan pedagogis dan evaluasi dampaknya. Kajian ini memberi kontribusi teoretis, praktis, dan strategis bagi perancangan evaluasi e-learning yang adaptif dan akuntabel.

Article Details

Section
Articles

References

Bergdahl, N.; Niehaus, R.; Nouri, J., "Unpacking student engagement in higher education learning analytics: the predominance of behavioural measures", International Journal of Educational Technology in Higher Education, 2024.0, doi: 10.1186/s41239-024-00493-y.

Siemens, G.; Baker, R.S., "Learning analytics and educational data mining: towards communication and collaboration", LAK'12 (ACM), 2013.0, doi: 10.1145/2330601.2330661.

O. Talbi; A. Ouared, "Goal‑oriented student motivation in learning analytics: A systematic review,", " Educ. Inf. Technol., 2022.0, doi: 10.1007/s10639-022-11091-8.

Šimić, D.; Turčić, I.; Hladnik, A.; et al., "HELA-CMM: capability maturity model for adoption of learning analytics in higher education institutions", International Journal of Educational Technology in Higher Education, 2025.0, doi: 10.1186/s41239-025-00509-1.

S.N. Kew; Si Na; Z. Tasir, "Developing a learning analytics intervention in e-learning to enhance students' learning performance: A case study,", " Educ. Inf. Technol., nan, doi: 10.1007/s10639-022-10904-0.

A.L. Sønderlund; E.M. Hughes; J.R. Smith, "The efficacy of learning analytics interventions in higher education: A systematic review,", dan N. L. D. Smith, nan, doi: 10.1111/bjet.12720.

Z. Pan; L. Biegley; A. Taylor; H. Zheng, "A systematic review of learning analytics: Concepts, trends, and research gaps,", trends, 2024.0, doi: 10.18608/jla.2023.8093.

de Oliveira, C.F.; Sobral, S.R.; Ferreira, M.J.; Moreira, F., "How Does Learning Analytics Contribute to Prevent Students' Dropout in Higher Education: A Systematic Literature Review", Big Data and Cognitive Computing, 2021.0, doi: 10.3390/bdcc5040064.

V. de Queiroga; A. Lopes; T. Kappel; F. Aguiar; V. Araujo; C. Muñoz-Soto; R. Villarroel; C. Cechinel, "Unpacking student engagement in higher education learning: A systematic review of learning analytics research 2013–2022,", dan J. Nouri, 2013.0, doi: 10.3390/app10113998.

J.P. da Silva Fonseca; A.R. de Sousa; J.J.-P. Z. de S. Tavares, "A Learning Analytics Approach to Identify Students at Risk of Dropout: A Case Study with a Technical Distance Education Course,", " Appl. Sci., nan, doi: 10.1016/j.procs.2022.12.345.

T. Tong; Z. Li, "Predictive modelling of student dropout risk in higher education: A cross‑institutional study", PLOS ONE, 2025.0, doi: 10.1371/journal.pone.0312124.

O. Goren; L. Cohen; A. Rubinstein, "Early Prediction of Student Dropout in Higher Education Using Machine Learning Models", Proceedings of the 17th International Conference on Educational Data Mining (EDM), 2024.0, doi: 10.5281/zenodo.12729834.

O. Talbi; A. Ouared, "Goal-oriented student motivation in learning analytics: How can a requirements-driven approach help?", Education and Information Technologies, 2022.0, doi: 10.1007/s10639-022-11091-8.

M. Morelli; A. Chirumbolo; R. Baiocco; E. Cattelino, "Self-regulated learning self-efficacy, motivation, and intention to drop-out: The moderating role of friendships at University", Current Psychology, 2023.0, doi: 10.1007/s12144-022-02834-4.

W. Li; Q. Feng; X. Zhu; Q. Yu; Q. Wang, "Effect of summarizing scaffolding and textual cues on learning performance, mental model, and cognitive load in a virtual reality environment: An experimental study", Computers & Education, 2023.0, doi: 10.1016/j.compedu.2023.104793.

A. Srivastava; V. Vaidya; S. Murthy; C. Dasgupta, "GeoSolvAR: Scaffolding spatial perspective-taking ability of middle-school students using AR-enhanced inquiry learning environment", British Journal of Educational Technology, 2024.0, doi: 10.1111/bjet.13456.

R. Kaliisa; K. Misiejuk; S. López-Pernas; M. Khalil; M. Saqr, "Have Learning Analytics Dashboards Lived Up to the Hype? A Systematic Review of Impact on Students’ Achievement, Motivation, Participation and Attitude", Proceedings of LAK24 (ACM), 2024.0, doi: 10.1145/3636555.3636884.

A. Stojanov; B. K. Daniel, "A decade of research into the application of big data and analytics in higher education: a literature review", Education and Information Technologies, 2023.0, doi: 10.1007/s10639-023-12033-8.

Sharif, H.; et al., "How Learning Analytics Is Shaping the Future of Education: A Systematic Literature Review", Education Sciences, 2024.0, doi: 10.3390/educsci14020176.

Banihashem, S.K.; Noroozi, O.; van Ginkel, S.; et al., "The role of learning analytics in enhancing feedback practices in higher education: A systematic review", Educational Research Review, 2022.0, doi: 10.1016/j.edurev.2022.100489.

Baker, R.S.; Gašević, D.; Karumbaiah, S., "Four paradigms in learning analytics: why paradigm convergence matters", Computers & Education: Artificial Intelligence, 2021.0, doi: 10.1016/j.caeai.2021.100021.

E. Whelan; A.N. Islam; C. Brooks, "A conceptual perspective on learning analytics frameworks without empirical validation,", dan L. Wang, 2024.0, doi: 10.1016/j.compedu.2019.103692.

K. Kalimeri; M.G. Beiró; M. Delfino; R. Raleigh; C. Cattuto, "A conceptual framework linking learning design with learning analytics,", dan A. Bakharia, 2016.0, doi: 10.1016/j.chb.2018.11.024.

S. Heikkinen; T. Mäki; S. Pusa; H. Heikkilä, "Supporting Self‑Regulated Learning with Learning Analytics: A Systematic Review", Education and Information Technologies, 2023.0, doi: 10.1007/s10639-022-11281-4.

Y. Fan; Q. Wang; H. Chen; et al., "Learning analytics to reveal links between learning design and tactics", International Journal of Artificial Intelligence in Education, 2021.0, doi: 10.1007/s40593-021-00249-z.

Matcha, L.; Gašević, D.; Jovanović, N.; Pardo, S., "Social learning analytics in higher education: A review of empirical studies", Journal of Learning Analytics, 2020.0, doi: 10.18608/jla.2020.73.3.

S. Barzilai; S. Mor-Hagani; A.R. Zohar; T. Shlomi‑Elooz; R. Ben‑Yishai, "Academic performance prediction in e-learning using integrative analytics,", dan F. Maroto-Gómez, 2023.0, doi: 10.1016/j.compedu.2020.103980.

C.-H. Tu; M. McIsaac, "Social learning analytics in higher education: A review of empirical studies,", N. Jovanović, 2020.0, doi: 10.1207/S15389286AJDE1603_2.

Uzun, Y.; Koseoglu, P.; Jivet, I.; et al., "Engagement with analytics feedback and its relationship to feedback literacy", International Journal of Educational Technology in Higher Education, 2025.0, doi: 10.1186/s41239-025-00515-3.

Weidlich, J.; Jivet, I.; Woitt, S.; et al., "Highly informative feedback using learning analytics: how feedback literacy moderates student perceptions of feedback", International Journal of Educational Technology in Higher Education, 2025.0, doi: 10.1186/s41239-025-00539-9.

Ngulube, P.; Ncube, M. M., "Leveraging Learning Analytics to Improve the User Experience of Learning Management Systems in Higher Education Institutions", Information, 2025.0, doi: 10.3390/info16050419.

Moon, J.; Kim, J.H.; Kang, M.; Park, M., "Using learning analytics to explore peer learning patterns in asynchronous gamified environments", International Journal of Educational Technology in Higher Education, 2024.0, doi: 10.1186/s41239-024-00476-z.

Wu, J.-Y.; Liao, C.-H., "Using learning analytics with temporal modeling to uncover the interplay of before-class video viewing engagement, motivation, and performance in an active learning context", Computers & Education, 2024.0, doi: 10.1016/j.compedu.2023.104975.

Kleimola, R.; Hirsto, L.; Ruokamo, H., "Promoting higher‑education students' self‑regulated learning through learning analytics: A systematic review and meta‑analysis", Education and Information Technologies, 2025.0, doi: 10.1007/s10639-024-12978-4.

Villagrán, I.; Hernández, R.; Schuit, G.; Neyem, A.; Fuentes, J.; Hilliger, I.; et al., "Enhancing Feedback Uptake and Self‑Regulated Learning in Procedural Skills Training: Design and Evaluation of a Learning Analytics Dashboard", Journal of Learning Analytics, 2024.0, doi: 10.18608/jla.2024.8195.

Alhazbi, S.; Al‑Ali, A.; Tabassum, A.; Al‑Ali, A.; Al‑Emadi, A.; Khattab, T.; Hasan, M. A., "Using learning analytics to measure self‑regulated learning: A systematic review of empirical studies in higher education", Journal of Computer Assisted Learning, 2024.0, doi: 10.1111/jcal.12982.

S. Heikkinen; T. Mäki; S. Pusa; H. Heikkilä, "Supporting Self‑Regulated Learning with Learning Analytics: A Systematic Review", Education and Information Technologies, 2023.0, doi: 10.1007/s10639-022-11281-4.

Aguilar, S.J.; Karabenick, S.A.; Teasley, S.D.; Baek, C., "Associations between learning analytics dashboard exposure and motivation and self‑regulated learning", Computers & Education, 2021.0, doi: 10.1016/j.compedu.2020.104085.

Saint, J.; Fan, Y.; Singh, S.; Gašević, D., "Using process mining to analyse self‑regulated learning: A systematic analysis of four algorithms", Proceedings of LAK21 (ACM), 2021.0, doi: 10.1145/3448139.3448171.

Luo, J.; et al., "Design and assessment of AI‑based learning tools in higher education: a human‑centred approach", IJETHE, 2025.0, doi: 10.1186/s41239-025-00540-2.

Tempelaar, D.; Rienties, B.; Giesbers, B., "Dispositional learning analytics and formative assessment: an inseparable twinship", International Journal of Educational Technology in Higher Education, 2024.0, doi: 10.1186/s41239-024-00489-8.

Hase, A.; Kuhl, P., "Teachers' use of data from digital learning platforms for instructional design: a systematic review", Educational Technology Research and Development, 2024.0, doi: 10.1007/s11423-024-10356-y.

Vaarma, M.; Li, H., "Predicting student dropouts with machine learning: An empirical study in Finnish higher education", Technology in Society, 2024.0, doi: 10.1016/j.techsoc.2024.102474.

A. Almalawi; B. Soh; A. Li; H. Samra, "Predictive Models for Educational Purposes: A Systematic Review", Big Data and Cognitive Computing, 2024.0, doi: 10.3390/bdcc8120187.

Glandorf, D.; Lee, H. R.; Orona, G. A.; Pumptow, M.; Yu, R.; Fischer, C., "Temporal and Between‑Group Variability in College Dropout Prediction", Proceedings of LAK24 (ACM), 2024.0, doi: 10.1145/3636555.3636906.

R. Kaliisa; J.A. Dolonen, "CADA: A Teacher-Facing Learning Analytics Dashboard to Foster Awareness of Students' Participation and Discourse Patterns in Online Discussions", Technology, Knowledge and Learning, 2023.0, doi: 10.1007/s10758-022-09598-7.

J. Pelz; S. Kumar; J.W. Gikandi, "Predicting Cognitive Presence in Asynchronous Online Discussions Using Learning Analytics", Online Learning Journal, 2022.0, doi: 10.24059/olj.v26i1.3060.

Xu, W.; Li, M.; Sun, Z.; Sun, Z.; P across authors, "Multimodal learning analytics of collaborative patterns during co‑creation: quantifying collaboration using product‑process evidence", International Journal of Educational Technology in Higher Education, 2023.0, doi: 10.1186/s41239-022-00377-z.

Zheng, L.; et al., "Promoting knowledge elaboration and socially shared regulation in online collaborative learning with an AI‑based knowledge graph feedback approach", IJETHE, 2023.0, doi: 10.1186/s41239-023-00415-4.

Rets, I.; Herodotou, C.; Gillespie, A., "Six Practical Recommendations Enabling Ethical Use of Predictive Learning Analytics in Distance Education", Journal of Learning Analytics, 2023.0, doi: 10.18608/jla.2023.7743.

Prinsloo, P.; Slade, S.; Khalil, M., "Considering student data privacy in learning analytics: a critical data studies perspective", British Journal of Educational Technology, 2022.0, doi: 10.1111/bjet.13216.

Zhidkikh, D.; Heilala, V.; Van Petegem, C.; Dawyndt, P.; Järvinen, M.; Viitanen, S.; De Wever, B.; Mesuere, B.; Lappalainen, V.; Kettunen, L.; Hämäläinen, R., "Reproducing Predictive Learning Analytics in CS1: Toward Generalizable and Explainable Models for Enhancing Student Retention", Journal of Learning Analytics, 2024.0, doi: 10.18608/jla.2024.7979.

Liu, Q.; Khalil, M., "Understanding privacy and data protection issues in learning analytics using a systematic review", British Journal of Educational Technology, 2023.0, doi: 10.1111/bjet.13388.

Broos, T.; et al., "Coordinating learning analytics policymaking and implementation in higher education institutions", British Journal of Educational Technology, 2020.0, doi: 10.1111/bjet.12934.

Tsai, Y.-S.; Rates, D.; Moreno‑Marcos, P.M.; et al., "Learning analytics in European higher education—trends and barriers", Computers & Education, 2020.0, doi: 10.1016/j.compedu.2020.103933.