Smart Health Monitoring: Analisis Suhu Tubuh Dan Respirasi Menggunakan Kamera Termal

Main Article Content

Suci Wahyuni
Firna Yenila
Yogi Wiyandra

Abstract

The advancement of digital technology and artificial intelligence has opened vast opportunities for intelligent health monitoring systems that operate automatically, in real time, and without physical contact. This study aims to develop a system for detecting human body temperature and respiratory patterns using an infrared thermal camera based on digital image processing and machine learning. The research method involves thermal data acquisition on facial areas (forehead, nose, and mouth), image preprocessing using two-point temperature calibration and Gaussian filtering for noise reduction, and segmentation of the respiratory region using the adaptive thresholding method. Feature extraction is performed by analyzing temperature variations in the nose and mouth regions as thermal signals, which are converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm to determine the respiration rate. Classification is carried out using the Support Vector Machine (SVM) algorithm to distinguish three physiological conditions: normal, fever, and respiratory disorder. The dataset consists of 550 thermal images, divided into 385 images (70%) for training and 165 images (30%) for testing. Experimental results show that the system achieves an accuracy of 98.32%, with an estimated forehead temperature of 145.23°C (a relative value from initial calibration) and a respiration rate of 6.6 bpm, indicating the subject’s condition as fever. This study demonstrates that the combination of thermal image processing, FFT algorithms, and SVM classification is effective for non-invasive, high-precision, and efficient health monitoring systems. The proposed system has the potential to support the development of the Internet of Medical Things (IoMT) for safe, accurate, and adaptive remote health monitoring in response to patients’ physiological changes

Article Details

Section
Articles

References

S. Sunarti, “Transformasi Pembelajaran Digital Dengan Artificial Intelligence,” vol. 17, no. 1, pp. 85–96, Jul. 2024.

A. Bagas Saputra, S. Sheila, F. Restu Pujianto, and A. Dwi Anggoro, “SINTESIA: Jurnal Sistem dan Teknologi Informasi Indonesia TINJAUAN KOMPREHENSIF MENGENAI PEMBUATAN SISTEM PEMANTAUAN KESEHATAN CERDAS MENGGUNAKAN TEKNOLOGI IOT”.

Ms. Bintoro Widodo, Mk. Mainita, Mhk. Dhona Ayu Qomara, H. Akhyak, and Ma. Direktur Pascasarjana UIN Sayyid Ali Rahmatullah Tulungagung, EDUKASI DUNIA KESEHATAN DALAM MENYAMBUT INDONESIA EMAS. [Online]. Available: www.akademiapustaka.com

D. Auly Yasmin and A. Zafia, “SISTEM MONITORING KESEHATAN MAHASISWA BERDASARKAN SATURASI OKSIGEN, DETAK JANTUNG DAN SUHU TUBUH BERBASIS IOT,” Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika (KARMAPATI), vol. 14, no. 2, 2025.

T. S-, “PROTOTIPE ALAT KALIBRATOR TERMOMETER NON KONTAK KLINIK MENGGUNAKAN SISTEM KONTROL LOGIKA FUZZY MAMDANI.”

Oleh, “BLIND NAVIGATION DENGAN THERMAL GRID CAMERA PROGRAM STUDI D4 TEKNIK OTOMASI JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI BALI,” 2015.

A. H. Dwiputra, Siti Arifah, and Muhammad Farhan Al Farisi, “Aplikasi Asuhan Keperawatan Pasien Asfiksia dengan Pola Nafas Tidak Efektif,” Jurnal Keperawatan Bunda Delima, vol. 7, no. 2, pp. 270–276, Aug. 2025, doi: 10.59030/jkbd.v7i2.196.

R. Alves, F. van Meulen, S. Overeem, S. Zinger, and S. Stuijk, “Thermal Cameras for Continuous and Contactless Respiration Monitoring,” Dec. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s24248118.

M. Mozafari, A. J. Law, R. A. Goubran, and J. R. Green, “Respiratory Rate Estimation from Thermal Video Data Using Spatio-Temporal Deep Learning,” Sensors, vol. 24, no. 19, Oct. 2024, doi: 10.3390/s24196386.

A. Khan, C. Kim, J. Y. Kim, A. Aziz, and Y. Nam, “Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model,” CMES - Computer Modeling in Engineering and Sciences, vol. 140, no. 2, pp. 1729–1755, 2024, doi: 10.32604/cmes.2024.049618.

F. Yenila, Yuhandri, and Okfalisa, “Enhancing ECG Images Using Wave Translation Algorithm with CWT—The Coronary Atherosclerosis Detection,” Journal of Advances in Information Technology, vol. 16, no. 2, pp. 251–263, 2025, doi: 10.12720/jait.16.2.251-263.

C. R. Choban, D. Kereš, K. M. Sandstrom, P. F. Hopkins, C. C. Hayward, and C. A. Faucher-Giguère, “A Dusty Locale: evolution of galactic dust populations from Milky Way to dwarf-mass galaxies,” Mon Not R Astron Soc, vol. 529, no. 3, pp. 2356–2378, Apr. 2024, doi: 10.1093/mnras/stae716.

Y. Wiyandra, I. Fitri, and Yuhandri, “Development of Feature Extraction for CT-scan Images in Detecting Auditory Ossicle Erosion,” Journal of Advances in Information Technology, vol. 15, no. 12, pp. 1380–1391, 2024, doi: 10.12720/jait.15.12.1380-1391.

A. Brasoveanu, M. Moodie, and R. Agrawal, “Textual evidence for the perfunctoriness of independent medical reviews,” in CEUR Workshop Proceedings, CEUR-WS, 2020, pp. 1–9. doi: 10.1145/nnnnnnn.nnnnnnn.

Z. Wang, Y. Zhao, and J. Chen, “Multi-Scale Fast Fourier Transform Based Attention Network for Remote-Sensing Image Super-Resolution,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 16, pp. 2728–2740, 2023, doi: 10.1109/JSTARS.2023.3246564.

S. Rahayu and Y. Yamasari, “Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM),” Journal of Informatics and Computer Science, vol. 05, 2024