Risk Prediction Of Coronary Heart Disease Using A Decision Tree Algorithm Based On Patient Medical Records

Main Article Content

Dinul Akhiyar
Nofriadiman
Radiyan Rahim
Firdaus

Abstract

Coronary heart disease (CHD) remains one of the leading causes of death worldwide, often due to late diagnosis and inadequate early detection. Early risk prediction of CHD is crucial to improve patient outcomes and reduce mortality. This study aims to develop a predictive model for assessing the risk of coronary heart disease using a decision tree algorithm, based on structured patient medical records. The dataset used contains various clinical features, including age, gender, cholesterol level, blood pressure, blood sugar, ECG results, and exercise-induced angina. A decision tree classifier was selected for its interpretability, ease of implementation, and effectiveness in handling categorical and numerical data. Data preprocessing steps such as missing value handling, normalization, and feature selection were applied to improve model performance. The model was trained and validated using k-fold cross-validation to ensure reliability. Performance was evaluated based on accuracy, precision, recall, and F1-score. The results demonstrate that the decision tree algorithm achieved satisfactory performance in predicting CHD risk, making it a potentially valuable tool for supporting clinical decision-making. This study highlights the importance of integrating data mining techniques into healthcare to enable timely and accurate risk assessment of life-threatening diseases such as coronary heart disease.

Article Details

Section
Articles

References

Alham, S. R. J. I. (2021). Sistem diagnosis penyakit jantung koroner dengan menggunakan algoritma C4.5 berbasis website (Studi kasus: RSUD Dr. Soedarso Pontianak). PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika, 14(2), 214–222. https://doi.org/10.33322/petir.v14i2.1338

Andika, R., & Putri, S. (2020). Analisis prediksi penyakit jantung menggunakan metode Decision Tree C4.5. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(1), 15–22.

Fauzi, R., & Haryanto, D. (2022). Prediksi penyakit jantung dengan metode Random Forest pada dataset lokal. Jurnal Sistem Informasi, 10(2), 89–97.

Indriyani, T., Rozi, F. F., Hakimah, M., Rozi, N. F., & Muhima, R. R. (2022). Metode decision tree C4.5 untuk klasifikasi penyakit jantung. Prosiding Seminar Nasional Sains dan Teknologi Terapan, 1(1), 1–6. https://ejurnal.itats.ac.id/sntekpan/article/view/6695

Karima, I. S. (2025). Penerapan machine learning untuk memprediksi risiko pengidap penyakit jantung menggunakan algoritma decision tree. FORMAT: Jurnal Ilmiah Teknik Informatika, 14(1), 1–6. https://doi.org/10.22441/format.2025.v14.i1.007

Kurniawan, A., & Wahyuni, S. (2021). Penerapan algoritma Random Forest dalam prediksi penyakit jantung koroner. Jurnal Sistem Informasi Terapan, 8(2), 45–53.

Lestari, N., & Susanto, F. (2020). Evaluasi performa klasifikasi penyakit jantung menggunakan Support Vector Machine. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(3), 120–127.

Mahendra, A. P., & Rizki, M. (2019). Klasifikasi penyakit jantung menggunakan Support Vector Machine (SVM). Jurnal Informatika, 13(3), 78–85.

Muzakki, F., Ubaydillah, I., Assyiami, N. R., & Soleha, S. (2022). Penerapan algoritma C4.5 untuk prediksi penyakit jantung menggunakan RapidMiner. Jurnal Komputer Antartika, 2(2), 1–6. https://doi.org/10.70052/jka.v2i2.304

]Nugroho, E., & Rahman, F. (2020). Evaluasi performa model decision tree dalam deteksi dini penyakit jantung. Jurnal Teknologi dan Sistem Informasi, 9(1), 12–19.

Putra, M. A., & Santoso, H. B. (2021). Penggunaan Gradient Boosting untuk prediksi risiko penyakit jantung koroner. Jurnal Rekayasa Sistem dan Teknologi Informasi, 7(4), 105–112.

Rahmawati, L., & Wijaya, A. (2022). Model prediksi penyakit jantung dengan algoritma XGBoost. Jurnal Ilmu Komputer dan Informasi, 10(2), 34–41.

Sari, D. P., & Hasan, M. (2020). Analisis penggunaan Decision Tree untuk prediksi penyakit jantung koroner. Jurnal Teknik Informatika dan Sistem Informasi, 6(1), 25–32.

Valentino, P., & Narulita, S. (2021). Performansi algoritma decision tree (C4.5) untuk prediksi penyakit jantung. Jurnal Cakrawala Informasi, 3(2). https://doi.org/10.54066/jci.v3i2.349

Yuliana, R., & Sutanto, A. (2022). Model prediksi penyakit jantung berbasis machine learning menggunakan metode Support Vector Machine dan Decision Tree. Jurnal Komputer dan Sistem Informasi, 9(1), 55–62.

Most read articles by the same author(s)

1 2 > >>