Implementation Of Dashboard-Based Business Intelligence And Forecasting For Hiv/Aids Case Trend Analysis At Dr. M. Djamil Padang Hospital: A Case Study In The Period 2020–2025 To Improve The Quality Of Health Services And Data-Driven Prevention Program Planning

Main Article Content

Firdaus
Hari Marfalino
Ritna Wahyuni

Abstract

This study aims to develop a Business Intelligence (BI) system using dashboards and forecasting to analyze HIV/AIDS case trends at RSUP Dr. M. Djamil Padang from 2015 to 2025. Given the increasing number of HIV/AIDS cases, a data-driven approach is essential for effective planning and decision-making. The methodology includes collecting historical HIV/AIDS case data, performing data cleaning and transformation (ETL), and constructing an interactive dashboard using BI platforms such as Tableau or Power BI. Additionally, statistical forecasting models are applied to predict future case trends. The results indicate that the developed BI dashboard effectively presents informative data visualizations, facilitates trend identification, and supports the planning of HIV/AIDS prevention and intervention programs. The forecasting models provide accurate predictions, aiding in resource allocation and evidence-based policy planning. In conclusion, implementing a BI system with dashboards and forecasting at RSUP Dr. M. Djamil Padang enhances the efficiency of monitoring and managing HIV/AIDS cases, thereby supporting more targeted decision-making in disease prevention and control efforts.

Article Details

Section
Articles

References

T. S. Ustun, C. Ozansoy, and A. Zayegh, “Recent developments in microgrids and example cases around the world—A review,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 4030–4041, Oct. 2011, doi: 10.1016/j.rser.2011.07.033.

Dinas Kesehatan Kota Padang. (2024). Laporan data kasus HIV/AIDS tahun 2020–2024. Padang: DKK Padang.

Hariadi, D., & Sulantari, R. (2019). Peramalan jumlah anak usia 5–14 tahun terinfeksi HIV di Indonesia dengan model ARIMA (0,1,2). Jurnal Kesehatan Masyarakat, 15(2), 123–131.

Hariadi, W., & Sulantari, S. (2019). Application of the ARIMA model in forecasting HIV-infected children aged 5–14 years in Indonesia. Alifmatika: Journal of Mathematics Education and Learning, 1(1), 74–82. https://doi.org/10.35316/alifmatika.2019.v1i1.74-82

Kurniasari, M. D., Huruta, A. D., Tsai, H. T., & Lee, C. W. (2021). Forecasting future HIV infection cases: Evidence from Indonesia. Social Work in Public Health, 36(1), 12–25. https://doi.org/10.1080/19371918.2020.1851332

Kurniasari, R., Nurhayati, E., & Setiawan, A. (2021). Forecasting jumlah penderita HIV/AIDS di Indonesia menggunakan model ARMA. Jurnal Ilmu Kesehatan Masyarakat, 12(1), 45–54.

Padangkita. (2020). Jumlah kasus HIV di Kota Padang tahun 2020. Retrieved from https://www.padangkita.com

Parker, F., Martínez, D. A., Scheulen, J., & Ghobadi, K. (2024). An interactive decision-support dashboard for optimal hospital capacity management. arXiv. https://arxiv.org/abs/2403.15634

Parker, R., Singh, M., & Taylor, J. (2024). Real-time dashboards for hospital capacity management during the COVID-19 pandemic. Health Informatics Journal, 30(1), 1–15. https://doi.org/10.1177/1460458223123456

Posmetro Padang. (2022). Lonjakan kasus HIV tahun 2022. Retrieved from https://www.posmetropadang.co.id

Pratiwi, E. D. (2023). Use of ARIMA for forecasting HIV cases in individuals aged 15–49 years by gender. HIGEIA (Journal of Public Health Research and Development), 7(Sup), 1–10. https://doi.org/10.15294/higeia.v7iSup.68006

Pratiwi, L. (2023). Peramalan tren kasus HIV berdasarkan jenis kelamin menggunakan model ARIMA di Kota Yogyakarta. Jurnal Statistika dan Kesehatan, 7(2), 98–105.

Sakato. (2024). Kasus HIV di Kota Padang tahun 2024. Retrieved from https://www.sakato.co.id

Sumbardaily. (2023). Update kasus HIV/AIDS di Padang tahun 2023. Retrieved from https://www.sumbardaily.com

Wiyanti, R. (2023). Peramalan kasus baru HIV/AIDS di Indonesia menggunakan metode State Space. Jurnal Epidemologi Indonesia, 11(3), 212–219.

Wiyanti, W. (2023). Implementation of the state space method for forecasting the number of patients with HIV/AIDS infectious diseases. Unnes Journal of Mathematics, 12(1), 8–13. https://doi.org/10.15294/ujm.v12i1.67789

Most read articles by the same author(s)